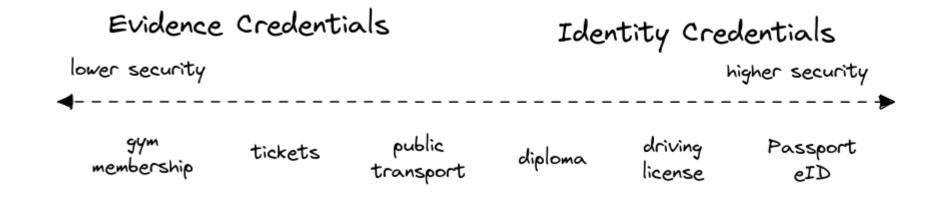


Remote Attestation for Wallet Authentication

Paul Bastian & Micha Kraus, Bundesdruckerei

Agenda

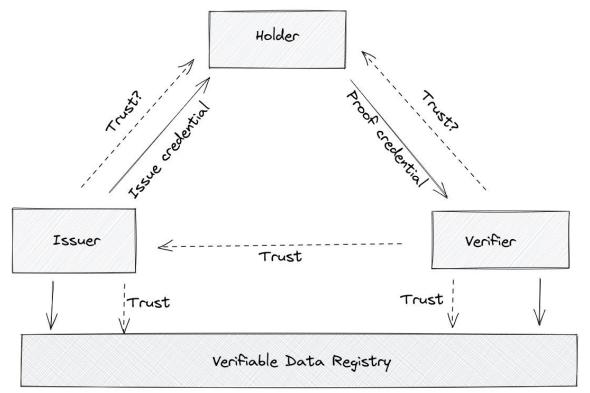


- 1. Motivation & Building Blocks
- 2. Activities
- 3. DIF Wallet Security Approach
- 4. OIDC4VC Approach
- 5. Next Steps and Outlook

Motivation

Create a framework for

- wallet ecosystem that supports freedom of choice and ensures interoperable security statement
 - i. Integrity of the Credential
 - ii. Authenticity of the Holder
 - iii. Authenticity of the Wallet
- wallets that support a variety of applications with and without regulation



Motivation: The Overlooked Trust Relation

Trust in the SSI Triangle

- Trust relationship to the holder / wallet is mostly overlooked so far
- More security-relevant use cases demand new requirements

Issuer

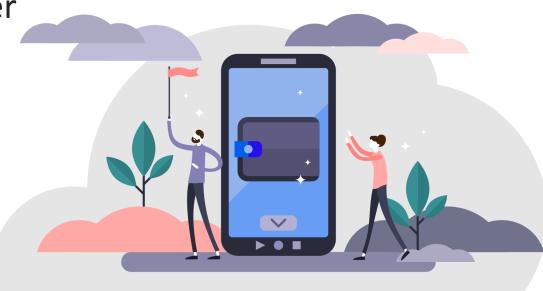
How can I prevent or hinder missuse of my issued credentials and maintain my credibility at all costs?

Verifier

Is the holder the rightful owner of this credential and to what degree can he plausibly prove that?

Is the holder's authentication strong enough to meet the requirements of my regulated use case?

Secure Wallet Building Blocks


Binding credentials to the wallet

Binding credentials to the holder

Authenticating the wallet

Activities in the last months

DIF Wallet Security WG (Rolling Notes)

- Wallet authentication/ Device binding with certifying entity
- W3C/AnonCred Credential Schema Wallet Authentication VC
- RFC0729 Device Binding Attachments


IIW #34

- Presentation and Discussion about wallet security ideas
- Talk: FIDO Authenticator for wallet security

IDunion AP3

- Integration wallet authentication /device binding to OIDC4VC
- Implementation building blocks (certifying entity)

The Existing Tools

Mobile Market

- The mobile device market is heavily fragmented
- This makes it difficult to build solutions for high market share
- Different solutions for secure storage
- Relying (partly) on OS security mechanism

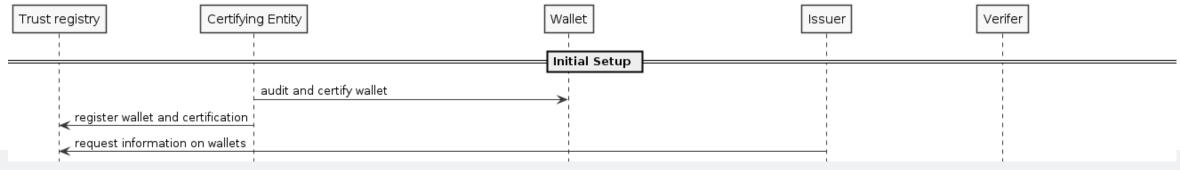
Cloud

- possible with HSM in the cloud
- Hybrid approaches feasible
- eIDAS Toolbox and major players focus on mobile market
- Similar problems to mobile if not entire web-wallet

DIF Wallet Security Approach

Combined Approach

- Implement device binding, wallet authentication and holder authentication into one lifecycle
- Legal obstacles(SafetyNet/DeviceChecker) and technical complexity motivate an additional entity to perform the attestations
- Useable with W3C Verifiable Credentials or AnonCreds

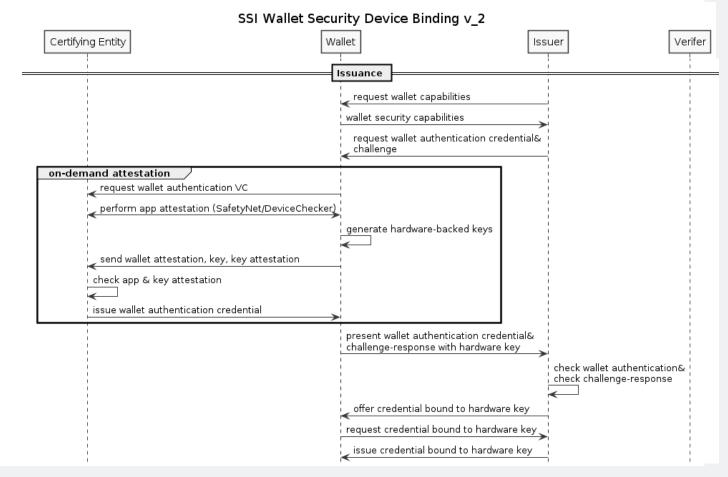

Participants in the Lifecycle

- Issuer / Holder / Verifier
- Certifying entity
 - Attests the device binding and wallet authentication
 - Either the wallet issuer backend service or trust framework-dependent trusted third party
- Trust registry

Dunion

list of multiple wallet issuers and their certification status, legal representation, contact information

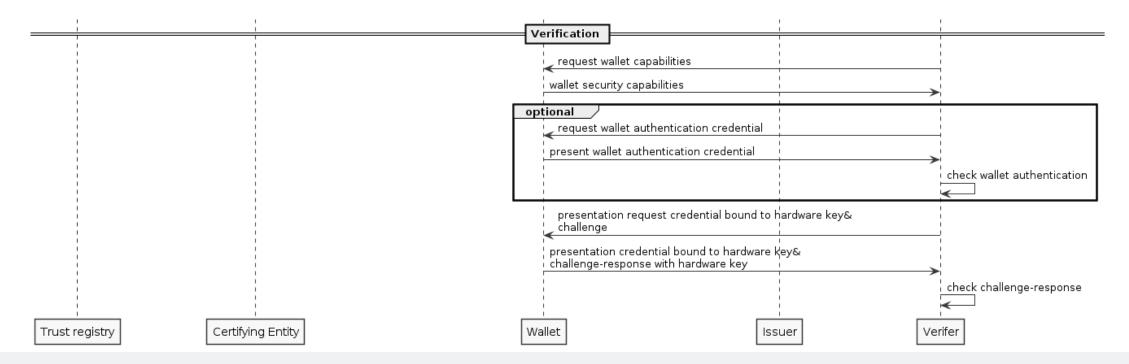
SSI Wallet Security Device Binding v_2


DIF Wallet Security Approach

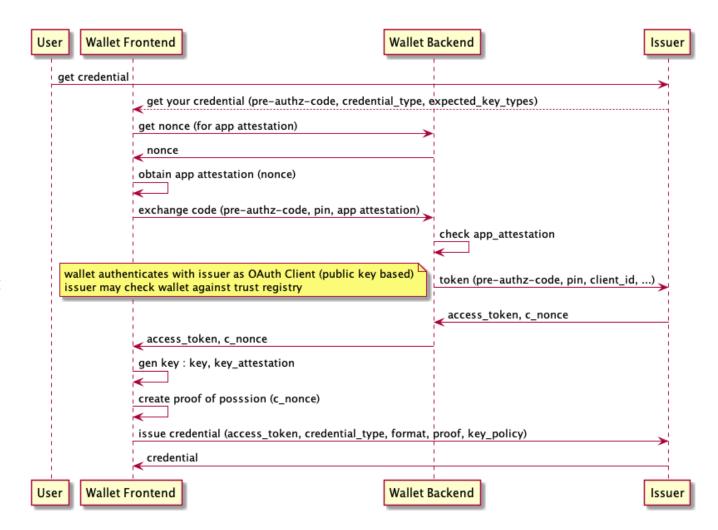
Issuance process

- Integrate the attestation process on-demand instead of upfront at wallet installation
- Use established mechanisms like VC and Present Proof to transmit information
- On-demand advantages
 - Fresh attestations
 - Minimal load on certifying entity
- Interfaces

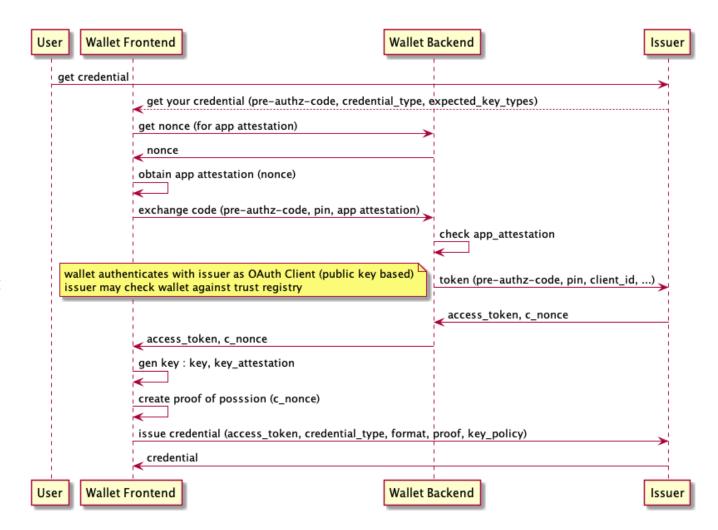
Dunion


- Aries <u>Device Binding Attachments</u>, e.g. for Present Proof v1/v2
- Certifying Entity <-> Wallet must not be standardized, but can be
- Wallet Authentication VC:
 - identity of the certifying entity
 - wallet name and version
 - hardware public key
 - hardware type and attestation?
 - issuance/expiration date
 - holder authentication mechanism

DIF Wallet Security Approach


Verification process

- Regular Present Proof protocol with Aries RFC0729 Device Binding Attachments
- Verifier framework checks challenge-response and matches public key with hardwarebound credential
- Optionally request Wallet Authentication VC and check attestations (actually not necessary if you trust the issuer)

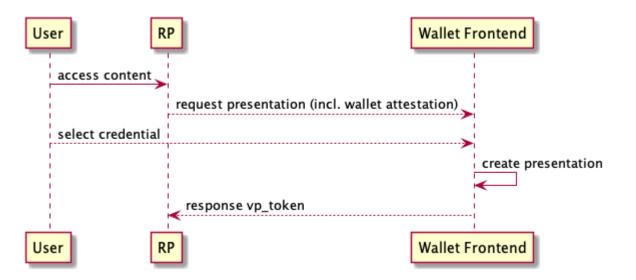

Issuance process

- app attestation in token endpoint
- key attestation in credential endpoint
- key information is part of credential
- alternative (more privacy preserving):
 - client assertion
 - wallet backend learns nothing about issuance process

Issuance process

- app attestation in token endpoint
- key attestation in credential endpoint
- key information is part of credential
- alternative (more privacy preserving):
 - client assertion
 - wallet backend learns nothing about issuance process

Issuance process (client assertion)


- alternative (more privacy preserving):
 - wallet backend does no to issuer
 - wallet backend learns r issuance process

	User Wallet F	rontend		Wallet B	ackend		Issuer
does not connect	get credential						
		get yo	ur credential (pre-authz-code, credential_type, expected_l	key_type	s, issuer)		
learns nothing about		get non nonce	ce (for app attestation)				
SS		obtain a	pp attestation (nonce)				
		get asse	rtion for code exchange(hash(pre-authz-code), app attest		1		
					check ap	p_attestation	
					generate	assertion (iss=wallet backend, pre_authz_code_hash, client_	id)
		< assert	ion				
		get issu	er metadata				→
wallet authenticates with issuer as OAuth Client (pu issuer may check wallet against trust registry	iblic key based)	token (p	re-authz-code, pin, client_id, assertion)				->
		< access	_token, c_nonce				
		gen key	: key, key_attestation				
		create p	roof of posssion (c_nonce)				
		issue cr creder	edential (access_token, credential_type, format, proof, key ıtial	y_policy)			→
	User Wallet F	rontend) [Wallet B	ackend	[lssuer

Verification process

- verification flows are matching to DIDComm flows
- verifiers could require app attestation for certain usecases
- not only issuers might require app attestationmore flexiblity if wallet authentication is encapsulated as verifiable credential

Current disussions/Open Questions

- Include the extended key/app attestations into Wallet Authentication VC?
- Implementation and demonstration of Aries RFC 0729
- Alternative Approach to Aries RFC 0729: Linked W3C Device Credential
 - Coupling between both credentials. 1:N, 1:1, N:1
 - Comparison
- Mechanisms for OpenID Connect frameworks
 - OIDC4VC Flows

Summary and Next Steps

Summary

- Successfully developed and tested multiple building blocks
- Improved wallet security for SSI ecosystem

Next steps

- Continue the discussion and work on wallet security
- Bring security mechanisms to standardization at DIF
- implement and test interoperable solutions

Thanks!

Paul Bastian, Bundesdruckerei GmbH paul.bastian@bdr.de

 \square

contact@idunion.org

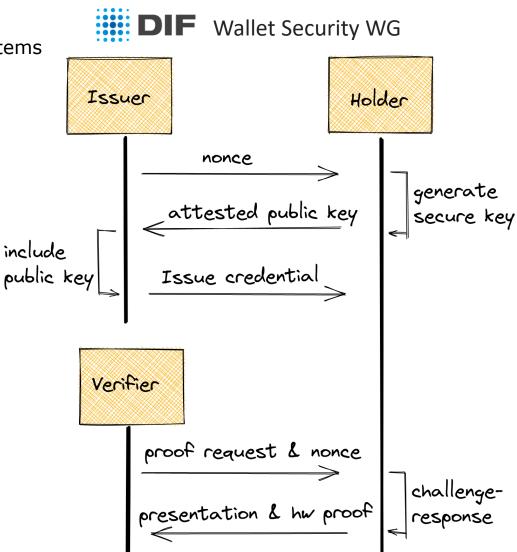
• Appendix

Requirements for Identity Credentials

Requirements from Regulations

- eIDAS LoA / TR-03107 Elektronische Identitäten
 - low, substantial, high
- Evaluation factors:
 - Enrolment
 - Proof of identity
 - Issuance security
 - Multi-Factor-Authentication
 - Possession
 - Knowledge
 - Biometry
 - Revocation
 - Communication security
 - Cryptographic algorithms

- Protection according to ISO18045 attack potential
 - ISO29115 attack vectors:
 - Online guessing
 - Offline guessing
 - Credential duplication
 - Credential theft


Integrity of the Credential

Device Binding Intermediate Solution

- Smallest common denominator for all hardware-backed crypto systems
 - Elliptic Curve NIST P256 with ECDSA-SHA256
 - No support for ZKP in hardware (also for BBS+)
- Simple challenge-response scheme
 - Attested hardware public key as VC attribute
 - Separate challenge-response check
- Pro:
 - DID-method and SSI-stack independent
 - simple, well-understood crypto system
- Contra:
 - No backup & recovery strategy possible (more on this later)
 - Adding a unique, trackable attribute

Device Binding Longterm Solution

- ZKP in mobile hardware takes 5-10 years
- Hybrid cloud?

Authenticity of the Holder

Enable Two-factor-authentication

- Knowledge factor (e.g. PIN)
- Inherence factor (e.g. biometrics)

Binding holder to the wallet

- Holder's authentication reference data is stored in the wallet
- Holder authentication check is performed internally in the wallet
- Wallet is a trusted device that the issuer and verifier must rely on
- better protection for biometric data, but requirement for trusted wallet

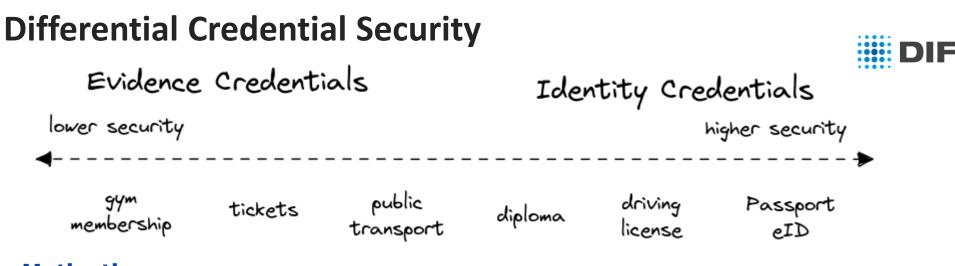

Best practices

- Biometry on mobile phones is easy to circumvent and not yet sufficient for regulated use cases
 - BSI TR-03166 Technical Guideline for Biometric Authentication Components in Devices for Authentication
- PIN is a secure and necessary method
 - System-PIN (operating system)
 - separate App-PIN or SE-PIN

Authenticity of the Wallet

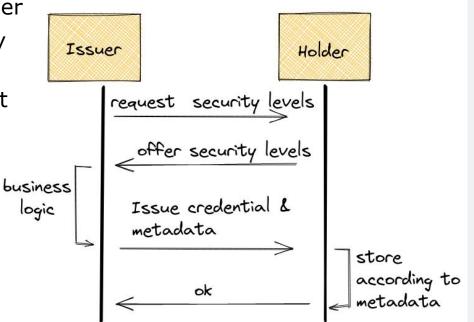
Wallet Authentication

- mobile OS presents a less-trusted, complex layer in front of trusted, high secure hardware key storage
- use existing mechanisms to verify and increase trust into the mobile phone
 - Android SafetyNet
 - iOS device check
- use key attestations to proof keys were generated in trusted hardware
- additional certification processes are possible
 - Hardware key storage
 - Accompanying mobile phone app



- Are we building another boarded-up eID safe?
- Do I really need that much security?
- Is this still self-sovereign identity?

Differential Credential Security Concept


Motivation

- SSI ecosystems brings use cases from different domains together
 - Regulated and non-regulated issuers have different security requirements
- Differential Credential Security model is a core feature for wallet security to address this flexibility
 - Wallet offers multiple LoA based on existing os/hardware
 - Issuer selects an option based on his usecase

Goals

Dunion

- Pain points of regulations only apply to necessary credentials
- Majority of credentials benefits for convenience like backup and biometrics

25

Wallet Security WG